Базовым логическим элементом серий является логический элемент И-НЕ. На рис. 2.3 приведены схемы трех первоначальных элементов И-НЕ ТТЛ. Все схемы содержат три основных каскада: входной на транзисторе VT1, реализующий логическую функцию И; фазоразделительный на транзисторе VT2 и двухтактный выходной каскад.
Принцип работы логического элемента серии К131 (рис. 2.3.а) следующий: при поступлении на любой из входов сигнала низкого уровня (0 – 0,4В), базо-эмиттерный переход многоэмиттерного транзистора VT1 смещается в прямом направлении (отпирается), и практически весь ток, протекающий через резистор R1, ответвляется на "землю", вследствие чего VT2 закрывается и работает в режиме отсечки. Ток, протекающий через резистор R2, насыщает базу транзистора VT3. Транзисторы VT3 и VT4 подключенные согласно схеме Дарлингтона, образуют составной транзистор, который представляет собой эмиттерный повторитель. Он выполняет функцию выходного каскада для усиления мощности сигнала. На выходе схемы образуется сигнал высокого логического уровня.
В случае, если на все входы подаётся сигнал высокого уровня, базо-эмиттерный переход многоэмиттерного транзистора VT1 находится в закрытом режиме. Ток, протекающий, через резистор R1 насыщает базу транзистора VT1, вследствие чего, отпирается транзистор VT5 и на выходе схемы устанавливается уровень логического нуля.
Поскольку в момент переключения транзисторы VT4 и VT5 открыты и через них протекает большой ток, в схему введён ограничительный резистор R5.
VT2, R2 и R3 образуют фазоразделительный каскад. Он необходим для поочередного включения выходных n-p-n транзисторов. Каскад имеет два выхода: коллекторный и эмиттерный, сигналы на которых противофазны.
Диоды VD1 - VD3 являются защитой от отрицательных импульсов.
В микросхемах серий К155 и К134 выходной каскад построен на повторителе не составном (только транзистор VT3) и насыщаемом транзисторе VT5 с введением диода сдвига уровня VD4 (рис. 2.3,б, в). Два последних каскада образуют сложный инвертор, реализующий логическую операцию НЕ. Если ввести два фазоразделительных каскада, то реализуется функция ИЛИ-НЕ.
На рис. 2.3, а показан базовый логический элемент серии К131 (зарубежный аналог - 74Н). Базовый элемент серии К155 (зарубежный аналог - 74) показан на рис. 2.3, б, а на рис. 2.3, в - элемент серии К134 (зарубежный аналог - 74L). Сейчас эти серии практически не развиваются.
Микросхемы ТТЛ первоначальной разработки стали активно заменяться на микросхемы ТТЛШ, имеющие во внутренней структуре переходы с барьером Шотки. В основе транзистора с переходом Шотки (транзистора Шотки) лежит известная схема ненасыщенного транзисторного ключа (рис. 2.4.а).
Чтобы транзистор не входил в насыщение, между коллектором и базой включают диод. Применение диода обратной связи для устранения насыщения транзистора впервые предложено Б. Н. Кононовым [2, 6] Однако в этом случае может увеличиться до 1 В. Идеальным диодом является диод с барьером Шотки. Он представляет собой контакт, образованный между металлом и слегка легированным n-полупроводником. В металле только часть электронов являются свободными (те, что находятся вне зоны валентности). В полупроводнике свободные электроны существуют на границе проводимости, созданной добавлением атомов примеси. При отсутствии напряжения смещения число электронов, пересекающих барьер с обеих сторон, одинаково, т. е. ток отсутствует. При прямом смещении электроны обладают энергией для пересечения потенциального барьера и прохождения в металл. С увеличением напряжения смещения ширина барьера уменьшается и прямой ток быстро возрастает.
При обратном смещении электронам в полупроводнике требуется больше энергии для преодоления потенциального барьера. Для электронов в металле потенциальный барьер не зависит от напряжения смещения, поэтому протекает небольшой обратный ток, который практически остается постоянным до наступления лавинного пробоя.
Ток в диодах Шотки определяется основными носителями поэтому он больше при одном и том же прямом смещении а, следовательно, прямое падение напряжения на диоде Шотки меньше, чем на обычном p-n переходе при данном токе. Таким образом, диод Шотки имеет пороговое напряжение открывания порядка (0,2-0,3) В в отличие от порогового напряжения обычного кремниевого диода 0,7 В и значительно снижает время жизни неосновных носителей в полупроводнике.
В схеме рис. 2.4, б транзистор VT1 удерживается от перехода в насыщение диодом Шатки с низким порогом открывания (0.2...0.3) В, поэтому напряжение повысится мало по сравнению с насыщенным транзистором VT1. На рис. 2.4, в показана схема с «транзистором Шотки». На основе транзисторов Шотки выпущены микросхемы двух основных серии ТТЛШ (рис. 2.5)
На рис. 2.5, а показана схема быстродействующего логического элемента, применяемого как основа микросхем серии К531 (зарубежный аналог - 74S), (S - начальная буква фамилии немецкого физика Шотки (Schottky)). В этом элементе в эмиттерную цепь фазоразделительного каскада, выполненного на транзисторе VT2, включен генератор тока - транзистор VT6 с резисторами R4 и R5. Это позволяет повысить быстродействие логического элемента. В остальном данный логический элемент аналогичен базовому элементу серии К131. Однако введение транзисторов Шотки позволило уменьшить tзд.р вдвое.
На рис. 2.5, б показана схема базового .логического элемента серии К555 (зарубежный аналог - 74LS) . В этой схеме вместо многоэмиттерного транзистора на входе использована матрица диодов Шотки. Введение диодов Шатки исключает накопление лишних базовых зарядов, увеличивающих время выключения транзистора, и обеспечивает стабильность времени переключения в диапазоне температур.
Резистор R6 верхнего плеча выходного каскада создает необходимое напряжение на базе транзистора VT3 для его открывания. Для уменьшения потребляемой мощности, когда логический элемент закрыт () , резистор R6 подключе не к общей шине, а к выходу элемента.
Диод VD7, включенный последовательно с R6 и параллельно резистору коллекторной нагрузки фазоразделительного каскада R2, позволяет уменьшить задержку включения схемы за счет использования части энергии, запасенной в емкости нагрузки, для увеличения тока коллектора транзистора VT1 в переходном режиме.
Транзистор VT3 реализуется без диодов Шoтки, т. к, он работает в активном режиме (эмиттерный повторитель).
В настоящее время микросхемы серии К555 в основном заменили серию К134, а в последующем должны полностью заменить и серию К155.
Перспективные серии ТТЛШ имеют несколько измененные схемы базовых логических элементов. На рис. 2.6 приведены возможные схемы входных каскадов логических элементов.
Диодный вариант 1 входной цепи (маломощные, К555) имеет большую входную емкость и сниженное пороговое напряжение включения.
Транзисторный вариант II, применяемый в элементах серии К531,имеет повышенное значение входного тока высокого уровня .
Для перспективных ТТЛШ используется вариант III входного каскада, где применен дополнительный усилитель тока (транзистор VT1). Поэтому в такой схеме значительно снижен входной ток низкого уровня , увеличено пороговое входное напряжение до 1,5 В и оно зафиксировано. В перспективных ИС применены новые интегральные транзисторы со структурой, названной "Изопланар-II". Такие структуры отличаются:
Среди трех перспективных серий ТТЛШ логические элементы серии КР1531 (зарубежный аналог - 74F) считаются как бы компромиссными, поскольку два других выполняются в милливаттном и сверхскоростном вариантах.
Сравнительная характеристика основных параметров микросхем ТТЛ приведена в табл. 2.1 [1].
Серия ТТЛ | Параметры | Нагрузка | |||||
---|---|---|---|---|---|---|---|
отечественная | зарубежная | tзд.р., нс. | Pпот., мВт. | Э, пДж | Cн, пФ | Rн, кОм | нагрузочная способность |
К134 | SN74L | 33 | 1 | 33 | 50 | 4 | 10 |
К155 | SN74 | 10 | 10 | 100 | 15 | 0.4 | 10 |
К531 | SN74S | 3 | 20 | 60 | 15 | 0.28 | 10 |
К555 | SN74LS | 10 | 2 | 20 | 15 | 2 | 20 |
КР1531 | SN74F | 3 | 4 | 12 | 15 | 0,28 | 10 |
КР1533 | SN74ALS | 4 | 2 | 8 | 15 | 2 | 20 |