[ Содержание ]
Увлекаетесь электроникой?
Приглашаем Вас принять участие
в бета-тестировании онлайн-редактора
электрических схем.
pulsar-cad.com
Работайте со схемами прямо из браузера.

2.4.2 Микросхемы типа ЛА, ЛИ

Чтобы рассмотреть схемотехнику, составим таблицу функций элементов И, И-НЕ для двух входов А и В (простейший вариант). Каждая переменная А и В моделируется электронным ключом, который можно замкнуть или разомкнуть. Если ключи соединены последовательно, то они работают согласно логике И: ток в цепи появится, если замкнуть оба ключа: и А и В. Если активными входными сигналами считать замыкание ключей А и В и назвать это событие логической 1, то, последовательно перебирая состояние этих ключей, составим таблицу входных и выходных данных для элементов И и И-НЕ.

Таблица состояний
Логический
элемент
Входные
переменные
Выходная
функция
Иллюстрация логической функции И на электронных ключах АBИНЕ-И
0001
0101
1001
1110
состояния электронных ключей и их соответствующие значения соответствие логических значений электрическим уровням

Рассмотрим способ реализации логической операции И-НЕ на элементах ТТЛ. На рис. 2.8, а приведена принципиальная схема двухвходового логического элемента И-НЕ.

Принципиальная схема логического элемента И-НЕ
Рис. 2.8.а. Принципиальная схема логического элемента.

Подавая от ключей S1 и S2 на входы А и В напряжение высокого В и низкого Н уровней, составим таблицу выходных уровней элемента.

Таблица состояний логического элемета
Вход Выход
Q(НЕ-И)
Вход Выход
Q(НЕ-И)
АBAB
ННВ001
НВВ011
ВНВ101
ВВН110

Напряжение низкого уровня Н появляется на выходе Q, когда на обоих входах А и В присутствует высокое напряжение В. Условное графическое обозначение двухвходового логического элемента показано на рис 2.8, в

условное графическое обозначение элемента И-НЕ
Рис 2.8.в. Условное обозначение элемента.

Среди простейших ИС ТТЛ преобладают элементы И, И-НЕ. Каждый из корпусов ИС типа ЛА и ЛИ содержит от двух до четырех логических элементов, а микросхемы ЛА2 и ЛА19 содержат по одному логическому элементу И-НЕ на восемь и двенадцать входов соответственно.

Цоколевки микросхем типа ЛА и ЛИ и их условные графические обозначения приведены на рис. 2.9, а основные параметры даны в табл. 2.3.

Условные обозначения и цоколевки микросхем ЛИ
Рис 2.9. Условные обозначения и цоколевки микросхем ЛИ
Условные обозначения и цоколевки микросхем ЛА
Рис 2.9. Условные обозначения и цоколевки микросхем ЛА

Следует особо выделить группу микросхем, логические элементы которых имеют выходы с открытым коллектором (ЛА7...ЛА11, ЛА13. ЛА18), (ЛИ2, ЛИ4, ЛИ5). Схема двухвходового логического элемента И-НЕ с открытым коллектором показана на рис. 2.10, а.

Принципиальная схема логического элемента И-НЕ с открытым коллектором
Рис. 2.10а. Принципиальная схема логического элемента И-НЕ

Для формирования выходного перепада напряжения к выходу такого элемента необходимо подключить внешний нагрузочный резистор Rн. Такие микросхемы применяются для обслуживания сегментов индикаторов, зажигания ламп накаливания, светодиодов (рис. 2.10,б).

Схема подключения ламп накаливания и светодиодов к логическим элементам с открытым коллектором
Рис. 2.10б. Схема подключения ламп накаливания и светодиодов

При необходимости в схемах можно использовать элемент ТТЛ с двухтактным выходом. Для некоторых микросхем с открытым коллекторным выходом (ЛА11) нагрузку можно подключать к более высоковольтному источнику питания (рис. 2.10,в).

Схема подключения нагрузки к высоковольтному источнику
Рис. 2.10в. Схема подключения нагрузки к высоковольтному источнику

Такое включение необходимо для зажигания газоразрядных и электролюминесцентных индикаторов. Выходы с открытого коллектора используют для подключения обмоток реле.

Выходы нескольких элементов с открытым коллектором можно присоединять к общей нагрузке Rн (рис. 2.10, г).

Схема подключения нескольких элементов с открытым коллектором к общей нагрузке
Рис. 2.10г. Схема подключения нескольких элементов к общей нагрузке

Такое подключение позволяет реализовать логическую функцию И, называемую «монтажное И». Схему (рис. 2.10. г) используют для расширения числа входов логического элемента.

Следует помнить, что двухтактные выходы ТТЛ нельзя соединять параллельно, это приводит к токовой перегрузке одного из элементов.

Многовходовые составные логические элементы с открытым коллектором и общим сопротивлением нагрузки Rн реализуются наиболее просто, однако они не позволяют получить предельное быстродействие. Более лучший способ увеличения числа входов осуществляется с помощью специальной микросхемы-расширителя, имеющей дополнительные выводы коллектора и эмиттера фазоразделительного каскада VT2 (рис. 2.11). Одноименные вспомогательные выводы нескольких таких элементов можно объединять.

Принципиальная схема логического элемента 2И-НЕ с дополнительными выводами коллектора и эмиттера
Рис. 2.11а. Принципиальная схема 2И-НЕ с дополнительными выводами коллектора и эмиттера.
Условное обозначение расширителя и способ соединения нескольких микросхем
Рис. 2.11б. Условное обозначение расширителя и способ соединения нескольких микросхем.

Микросхема К531ЛА16 (магистральный усилитель) может передавать данные в линию с сопротивлением 50 Ом.

Микросхемы ЛА17, ЛА19 - это логические элементы И-НЕ с тремя состояниями на выходе, т. е. они имеют дополнительный вход /ЕО (Enable output), дающий разрешение по выходу. На рис. 2.12 показана схема элемента, который имеет третье выходное состояние Z, когда выход размыкается.

 Принципиальная схема логического элемента с тремя состояниями на выходе
Рис. 2.12. Принципиальная схема логического элемента с тремя состояниями на выходе.

Для этой цели в схему стандартного сложного инвертора ТТЛ вводится дополнительный инвертор DDI и диод VD2. Если на этот вход /ЕО подать от переключателя S1 напряжение высокого уровня - 1, то выходное напряжение инвертора DD1 станет низким, т. е. катод диода VD2 будет практически соединен с корпусом. Из-за этого коллектор транзистора VT2 будет иметь нулевой потенциал, т. е. транзистор VT2 будет закрыт. Транзисторы VT3 и VT4 будут находиться в режиме отсечки, т. е. оба закрыты. Следовательно, выходной вывод как бы «висит» в воздухе, микросхема переходит в состояние Z с очень большим выходным сопротивлением. Если на вход ЕО подается разрешающий низкий уровень - О, то логический элемент И-НЕ работает как в обычном режиме.

Таблица состояний логического элемента.
Вход Выход
соответствие логических значений электрическим уровням /EO I /Y
обозначение элемента с Z-состоянием 00
1
1
0
10
1
Z

Такие логические элементы разработаны специально для обслуживания проводника шины данных. Если к такому проводнику присоединить много выходов, находящихся в состоянии Z, то они не будут влиять друг на друга. Активным передающим сигналом должен быть лишь один логический элемент, только от его выхода в проводник шины данных будет поступать информация. Следовательно, соединенные вместе выходы не должны быть одновременно активными.

Чтобы сигналом разрешения (низкий уревень - О) , подаваемым на вход /EO, подключался к проводнику выход только одного логического элемента, необходимо предусмотреть дополнительный (защитный) временной интервал, т. е. переключать входы /ЕО различных элементов с паузой. Сигналы разрешения, даваемые выходам разных элементов, не должны перекрываться.

Микросхема К531ЛА19-это 12-входовый логический элемент И-НЕ с дополнительным инверсным входом /ЕО. Сигнал появится на его выходе, если на вход /ЕО подано напряжение низкого уровня - О. Выход логического элемента перейдет в разомкнутое состояние Z, если на вход /ЕО подается напряжение высокого уровня. В состоянии Z элемент потребляет ток Iпот.z=25 мА. Время задержки перехода выхода к разомкнутому состоянию tзд.1z= 16 нс, время задержки перехода выхода tзд.0z= 12 нс (от напряжения низкого выходного уровня), при условии, что Сн = 15 пФ [1].


Valid XHTML 1.0 Transitional